Главная
Новости
Строительство
Ремонт
Дизайн и интерьер




20.01.2022


19.01.2022


18.01.2022


13.01.2022


12.01.2022


27.12.2021





Яндекс.Метрика

Топологическая комбинаторика

19.10.2021

Топологическая комбинаторика — это молодая область математики, возникшая в последней четверти 20-го века, которая занимается следующими вопросами:

  • Применение методов топологии к задачам дискретной математики
  • Топологические обобщения задач дискретной геометрии
  • Дискретизация топологических понятий
  • Предпосылки

    Комбинаторная топология использует комбинаторные принципы в топологии и в начале 20-го века превратилась в область алгебраической топологии.

    В 1978 ситуация развернулась — методы алгебраической топологии были использованы для решения задачи в комбинаторике, когда Ласло Ловас доказал гипотезу Кнезера и началось новое изучение топологической комбинаторики.

    Задачи и методы

    Доказательство Ловаша использует теорему Борсука — Улама и эта теорема удерживает выдающуюся роль в этой новой области. Эта теорема имеет много эквивалентных версий и аналогов и используется для изучения задач справедливого дележа.

    В другом приложении гомологических методов к теории графов Ловаш доказал как неориентированную, так и ориентированную версии гипотезы Франка — Если задан k-связный граф G, k точек v1,...,vkV(G) и k положительных чисел n1,n2,...,nk, сумма которых равна |V(G)|, существует разбиение {V1,...,Vk} множества V(G), такое, что viVi, |Vi|=ni и Vi образуют связный подграф.

    В 1987 Нога Алон решил задачу дележа ожерелья, используя теорему Борсука — Улама. Теорема использовалась также для изучения вычислительной сложности линейных алгоритмов дерева решений и гипотезы Аандераа — Карпа — Розенберга. Другие области изучении — топологии частично упорядоченных множеств и порядков Брухата.

    Кроме того, методы из дифференциальной топологии теперь имеют комбинаторный аналог в дискретной теории Морса.